首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23082篇
  免费   3947篇
  国内免费   3675篇
化学   17790篇
晶体学   327篇
力学   1155篇
综合类   295篇
数学   2524篇
物理学   8613篇
  2024年   20篇
  2023年   438篇
  2022年   547篇
  2021年   767篇
  2020年   897篇
  2019年   937篇
  2018年   778篇
  2017年   795篇
  2016年   1106篇
  2015年   1137篇
  2014年   1380篇
  2013年   1875篇
  2012年   2098篇
  2011年   2288篇
  2010年   1624篇
  2009年   1570篇
  2008年   1707篇
  2007年   1537篇
  2006年   1380篇
  2005年   1135篇
  2004年   931篇
  2003年   761篇
  2002年   713篇
  2001年   610篇
  2000年   525篇
  1999年   449篇
  1998年   387篇
  1997年   318篇
  1996年   268篇
  1995年   312篇
  1994年   269篇
  1993年   203篇
  1992年   161篇
  1991年   143篇
  1990年   152篇
  1989年   89篇
  1988年   80篇
  1987年   51篇
  1986年   61篇
  1985年   44篇
  1984年   36篇
  1983年   36篇
  1982年   19篇
  1981年   12篇
  1980年   15篇
  1979年   6篇
  1978年   5篇
  1975年   5篇
  1973年   4篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Yeasts play a key role in the production of alcoholic beverages by fermentation processes. However, because of their continuous growth, they commonly cause spoilage of the final product. Herein, we introduce dual magnetic/light-responsive self-propelled microrobots that can actively move in a beer sample and capture yeast cells. The presence of magnetic nanoparticles on the surface of the microrobots enables their magnetic actuation under fuel-free conditions. In addition, their photoactivity under visible-light irradiation leads to an overall enhancement of their swimming and yeast removal capabilities. It was found that after the application of the microrobots into a real unfiltered beer sample, these micromachines were able to remove almost 100 % of residual yeasts. In addition, these microrobots could also be added at the initial step of the fermentation process without altering the final beer properties, such as alcohol level, color, and pH. This work demonstrates the potential of using externally actuated microrobots as an innovative and low-cost solution for avoiding yeast spoilage in complex liquid environments, such as alcoholic beverages. Therefore, these autonomous self-propelled microrobots open new avenues for future applications in the food industry.  相似文献   
92.
Lithium–sulfur batteries (LSBs) still suffer from the shuttle effect on the cathode and the lithium dendrite on the anode. Herein, polyacrylonitrile (PAN) is developed into a bifunctional host material to simultaneously address the challenges faced on both the sulfur cathode and lithium anode in LSBs. For the sulfur cathode, PAN is bonded with sulfur to produce sulfurized PAN (SPAN) to avoid the shuttle effect. The SPAN is accommodated into a conductive 3D CNTs-wrapped carbon foam to prepare a self-supporting cathode, which improves the electronic and ionic conductivity, and buffers the volume expansion. Thereby, it delivers reversible capacity, superb rate capability, and outstanding cycling stability. For the Li-metal anode, PAN aerogel is carbonized to give macroporous N-doped cross-linked carbon nanofiber that behaves as a lithiophilic host to regulate Li plating and suppress the growth of Li dendrite. Combining the improvements for both the cathode and anode realizes a remarkable long-term cyclability (765 mAh g−1 after 300 cycles) in a full cell. It provides new opportunity to propel the practical application of advanced LSBs.  相似文献   
93.
94.
95.
96.
The development of catalysts capable of catalyzing amidation of esters with amines to construct amides under mild conditions is of great importance. Compared to aliphatic amines, the direct catalytic amidation of esters with less nucleophilic aromatic amines is rather difficult. Employing simple lanthanide tris (amide) complexes Ln[N (SiMe3)2]3(μ-Cl)Li (THF)3 as the catalysts, it was found a broad range of aromatic amines and esters were efficiently converted into various amides in good yields under mild conditions. A plausible mechanism for this transformation was experimentally supported as starting from an amide exchange reaction between the lanthanide tris (amide) complex and the substrate amine.  相似文献   
97.
Russian Journal of Physical Chemistry A - Pomelo peel was modified by FeCl3 at the mass ratio of 25 : 1 to remove Methylene Blue (MB). The characteristics of pomelo peel before...  相似文献   
98.
A novel crystalline high-silica zeolite with 12×8-membered ring (R) channel system is prepared with the aid of the 3D electron diffraction (3D ED) technique. A crystal with the same topology as one of the predicted daughter structures of CIT-13 germanosilicate, named ECNU-23 (East China Normal University 23) was coincidentally detected by the 3D ED investigation during the structure characterization of the “pure” powder sample of existing one-dimension (1D) 10-R ECNU-21. By controlling the alkaline-assisted hydrolysis under moderate conditions, we purified the phase of ECNU-23 by selectively breaking and removing the chemically weak Ge(Si)-O-Ge and metastable Si-O-Si bonds. Its structure was determined based on the 3D ED data, and confirmed by high-resolution TEM images and powder X-ray diffraction (PXRD) data. The aluminosilicate Al-ECNU-23 shows unique catalytic properties in the isomerization/ disproportionation of m-xylene as solid-acid catalyst.  相似文献   
99.
利用基于密度泛函理论的第一性原理,研究了Cu:Fe:Mg:LiNbO3晶体及对比组的电子结构和光学特性.研究显示,单掺铜或铁铌酸锂晶体的杂质能级分别由Cu 3d轨道或Fe 3d轨道贡献,禁带宽度分别为3.45和3.42 eV;铜、铁共掺铌酸锂晶体杂质能级由Cu和Fe的3d轨道共同贡献,禁带宽度为3.24 eV,吸收峰分别在3.01,2.53和1.36 eV处;Cu:Fe:Mg:LiNbO3晶体中Mg^2+浓度低于阈值或高于阈值(阈值约为6.0 mol%)的禁带宽度分别为2.89 eV或3.30 eV,吸收峰分别位于2.45 eV,1.89 eV或2.89 eV,2.59 eV,2.24 eV.Mg^2+浓度高于阈值,会使吸收边较低于阈值情况红移;并使得部分Fe^3+占Nb位,引起晶体场改变,从而改变吸收峰位置和强度.双光存储应用中可选取2.9 eV作为擦除光,2.5 eV作为读取和写入光,选取Mg^2+浓度达到阈值的三掺晶体在增加动态范围和灵敏度等参量以及优化再现图像的质量等方面更具优势.  相似文献   
100.
Song  Ying  Liu  Renwei  Li  Shaofan  Kang  Zhuang  Zhang  Feng 《Meccanica》2020,55(4):961-976
Meccanica - In this work, a bond-based peridynamic de-icing model has been developed to simulate the thermo-mechanical ice removal process of frozen structures. In the proposed numerical method,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号